Review of Algebra

8/23/16

Real Numbers and Mathematical Operations

1. Sets of Numbers

- Natural numbers or Counting Numbers: (1, 2, 3, 4, 5...)
- Whole Numbers: $\{0,1,2,3,4,5 . .$.
- Whole numbers include all natural numbers
- Integers: $\{\ldots,-4,-3,-2,-1,0,1,2,3,4,5 \ldots\}$
- Integers include negative numbers, whole numbers and natural numbers
- Rational Numbers: the set of all numbers that can be expressed as a ratio of two integers where 0 is not in the denominator
- Ratio is a comparison of numbers
- Every integer is a rational number

2. Examples of Rational Numbers

- $1 / 2,-2 / 7$
- $1 / 2=0.5 \rightarrow 2 \div 1=0.5-$ This is a terminating decimal (all terminating decimals are rational numbers)
- $0.73=73 / 100$ This is a terminating decimal
- $1 \frac{1}{2}=\frac{2(1)+1}{2}=\frac{3}{2}$
- $1 / 3=0.3333 \ldots=0.3-$ this is a repeating decimal
- $6 / 3=2$ because $3 \times 2=6$
- $7 / 7=1$ because $7 \times 1=7$
- $5 / 0=$ undefined
- $6=6 / 1$ or $12 / 2$ or $18 / 3$

3. Irrational numbers: all real numbers that are not rational numbers (the can't be expressed as the ratio of two integers)
a. Examples: $\sqrt{2}, \sqrt{5}, \pi, \sqrt[3]{6} \ldots$
b. Cool fact: irrational numbers have a non-terminating and non-repeating decimal property expansion
c. $\pi=3.14159265$
4. The Real Number Line: contains all the real numbers as points-the more to the right a number is, the greater the number

Operations with Real Numbers

- Absolute Value: The absolute value of a number represents the distance on the number line between that number and 0
- Absolute value bars: $|x|$
- Examples:
- $|3|=3$
- $|-(-8)|=|8|=8$
- $-|-4|=-4$
- Additive Opposites: 2 numbers that are the same distance from 0 but on opposite sides of 0 on the number line are said to be additive inverse (or opposites) of each other. They add up to 0
- Examples:
- $10,-10$
- $0.34,-0.34$
- $-\frac{1}{2}, \frac{1}{2}$

- Addition of Real Numbers

- Rule 1: If all numbers are positive, then add as usual, the answer is positive
- Rule 2: If all numbers are negative then add as usual, the answer is negative
- Rule 3: If one number is positive and other is negative then:
- Find the absolute value of both numbers
- Find the difference between the absolute values
- Give the sign of the original number with the larger absolute value
- Examples:
- $5+2=7$
- $-5+2=-3$
- $-5-2=-5+(-2)=-7$
- $5-2=5+(-2)=3$
- $\frac{-7}{8}+\frac{3}{4}=$ You need the same denominator to add fractions

$$
{ }^{4} \frac{-7}{8}+\frac{3 \times 2}{4 \times 2}=\frac{-7+6}{8}=\frac{-1}{8}
$$

- $-\frac{3}{5}-\frac{4}{3}=-\frac{3 \times 3=9}{5 \times 3=15}-\frac{4 \times 5=20}{3 \times 5=15}=\frac{-9-20}{15}=\frac{-29}{15}$

Multiplication \& Division of Real Numbers

$+x+=+$
$-\times-=+$
$+\times-=-$
$-x+=-$
Same for division

- $-\mathbf{1} \frac{\mathbf{1}}{\mathbf{3}}-\frac{7}{8}=-\frac{3(1)+1}{3}-\frac{7}{8}=-\frac{4 \times 8}{3 \times 8}-\frac{7 \times 3}{8 \times 3}=-\frac{32}{24}-\frac{21}{24}=\frac{-32-21}{24}=\frac{-53}{24}$
- 4.5
$\times 2$
9.0

Multiplication Examples:

- $2(4)=8 \quad 0(-5)=0$
- $-2(-4)=8 \quad-\frac{1}{2}\left(\frac{1}{4}\right)=-\frac{1}{8}$
- $2(-4)=-8$
- $-2(4)=-8$

Division Examples:

- $-\frac{1}{2} \div\left(-\frac{1}{2}\right)=$
- $-8 \div 2=-4$
- $-8 \div(-2)=4$
- $-\frac{1}{2} \div\left(-\frac{1}{2}\right)=1$
- $0 \div 5=0$
- $6 \div 0=$ Undefined

Reciprocal or Multiplicative Inverse: two numbers are reciprocals (or multiplicative inverse) of each other if their product equals 1.

- $\frac{3}{5}, \frac{5}{3}$
- $-\frac{2}{3},-\frac{3}{2}$
- $\frac{6}{1}, \frac{1}{6}$
- $-\frac{1}{2} \div\left(-\frac{1}{2}\right)=-\frac{1}{2} x\left(-\frac{2}{1}\right)=\frac{1 \times 2}{2 x 1}=\frac{2}{2}=1$

