Normal Curve Notes

Many types of data will form a graph that is shaped like a normal curve (or bell curve).

Distributions of data that are collected can differ in many ways.

A series of normal curves with the same mean average but different standard deviations. (Example Below)

Once a set of data has been collected and is known to be approximately normally distributed, then the empirical rule can be applied to the analysis of the data

Theorem The Empirical Rule

For a distribution that is symmetrical and normally distributed:

1. Approximately 68.2% of all data values will lie within one standard deviation on either side of the mean.
2. Approximately 95.4% of all data values will lie within two standard deviations on either side of the mean.
3. Approximately 99.7% of all data values will lie within three standard deviations on either side of the mean.

Because the curve is symmetrical, these percentages will be split evenly on either side of the mean.

Definition $\quad z$-Score (Standard Score)

A z-score is the number of standard deviations (s) that a particular piece of data (x) is from the mean average $(\bar{x}$) for the set of data. If a z-score is positive, then the piece of data in question is above the mean average, and if the z-score is negative, then it is below the mean average. A z-score is calculated as follows:

$$
z=\frac{x-\bar{x}}{s}
$$

(See Figure 8-16.)

FIGURE 8-16
Normal curve and z-scores.

Example Problems:

1. Given a mean test score of 80 with a standard deviation of 5 , calculate the following z-scores.
(a) What would your z-score be if you scored 85 on the test?
(b) What would your z-score be if you scored 70 on the test?
(c) What would your z-score be if you scored 93 on the test?
(d) What about for a test score of 90 ?
(e) If you had a z-score of -1.5 on this test, what numerical grade did you have?

1a.

$$
z=\frac{x-\bar{x}}{s} \Longrightarrow=\frac{85-80}{5}=\frac{5}{5} \quad=1
$$

1b. $\quad z=\frac{x-\bar{x}}{s} \Longrightarrow=\frac{70-80}{5}=\frac{-10}{5}=-2$

1c. $z=\frac{x-\bar{x}}{s} \longrightarrow=\frac{93-80}{5}=\frac{13}{5} \quad \begin{aligned} & =2.6, \text { or } 2.6 \text { standard deviations } \\ & \text { above average }\end{aligned}$

1d. $z=\frac{x-\bar{x}}{s} \Longrightarrow=\frac{90-80}{5}=\frac{10}{5}=2$, or 2 standard deviations above average

1e. Here we will be solving the z-score formula for the value of x, the data value corresponding to your test grade.

$$
z=\frac{x-\bar{x}}{s} \Longleftrightarrow-1.5=\frac{x-80}{5}=-7.5=x-80 \quad 72.5=x
$$

