Chapter 8: Mean, Median \& Mode

We will also look at measures of variation that tell us the "spread" of the data:
Range
Standard deviation

- Mode - The mode of a set of data is the most repeated observation(s) or item(s).

Find the mode of the following sets of numbers:
$2,4,6,8,8,10,12 \rightarrow 8$
$2,2,3,4,4,4,5,6,6 \rightarrow 4$

- Median - The median of a set of observations is the observation in the center or middle of the list after they have been placed in some kind of meaningful order. It has the symbol \widetilde{X} called "x-tilde."

Find the median of the following sets of data:
$1,2,3,3,5,6,7,9,9 \rightarrow \widetilde{X}=5$
$2,6,4,7,8,1,2,9$---- $1,2,2,4,6,7,3,9=4+6=10 \div 2=\widetilde{X}=5$

- Arithmetic Mean - The arithmetic mean is found by totaling the observations in a set of data and then dividing the total by the number of items in the original list. This average has its own symbol \bar{X} called "x-bar."
Find the arithmetic mean of the following sets of data and round your answer to one decimal place:
$3,4,5,5,7,8,9,11,0,15$

$2.3,6,7.3,4,6,7,6.3$

- Weighted Mean - In some situations, data items may vary in degree of importance, or weight. For example, a final exam might be 25% of your final average in a particular course, whereas each test may count for 20% and homework 15%.

We use the following formula for computing weighted means:

$$
\bar{x}=\frac{\sum(w \cdot x)}{\sum w}
$$

Here, w represents weights and x represents data points.

Range - the range of a set of data is the difference between the highest and the lowest number in the data set. $\mathrm{R}=$ (highest number) - (lowest number)

Number set	Numbers
A	$5,5,5,5,5 \mathrm{R}=\mathbf{5 - 5 = 0}$
B	$6,5,5,5,4 \mathrm{R}=\mathbf{6 - 4 = \mathbf { 2 }}$
C	$7,6,5,4,3 \mathrm{R}=\mathbf{7 - 3 = 4}$
D	$-7,-6,-5,-4,-3$

Standard Deviation - a rough measure of the average amount by which observations in a set of data deviate from mean average value of the group. This deviation may be either above or below the mean.

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
$$

The set of numbers is: $\mathbf{8 , 6 , 0 , 2 , 9}$

1. Find $\bar{x}: \bar{x}=\frac{8+6+0+2+9}{5}=\frac{25}{5}=5$
2. Create Chart:

Data: \mathbf{x}	Data - Mean: $\mathbf{x}-\overline{\mathbf{x}}$	$(\text { Data - Mean) })^{2}:(\mathbf{x}-\overline{\mathbf{x}})^{\mathbf{2}}$
8	$8-5=3$	$(3)^{2}=9$
6	$6-5=1$	$(1)^{2}=1$
0	$0-5=$	$(5)^{2}=25$
2	$2-5=-5$	$(2)^{2}=4$
9	$9-5=4$	$(4)^{2}=16$
Total	0	60

3. Divide the total on the (Data - Mean) ${ }^{2}$ column by $\mathrm{n}-1$ (n : is the sample size)
$\frac{60}{5-1}=\frac{60}{4}=\frac{30}{2}=15$

4. Take the square root of the result above

$\sqrt{15} \approx 3.9$

