Chapter 8.3 Frequency Tables and Histograms - Answer Key

1a.		
1a.	70-74	1
	75-79	2
	80-84	1
	85-89	7
	90-94	0
	95-99	3
	100-104	5
	105-109	4
	110-114	1
	115-119	2
	120-124	2

1c. bimodal

	10-14	3
2a.	15-19	5
	20-24	5
	25-29	7
	30-34	9
	35-39	5
	40-44	3
	45-49	2
	50-54	1
		2

Chapter 8.4, 8.5 - Descriptive Statistics and Variation - Answer Key

- 1. The first set because there is more variability in the numbers.
- 2. They have the same standard deviation since the differences among the data items remains alike in both sets.

2	n
J	a.

Data: x	Data – Mean: x - 🛽	$(Data - Mean)^2 : (x - \overline{2})^2$
6	6 – 7 = -1	$(-1)^2 = 1$
6	6 – 7 = -1	$(-1)^2 = 1$
10	10 – 7 = 3	$(3)^2 = 9$
12	12 – 7 = 5	$(5)^2 = 25$
3	3 – 7 = 4	$(4)^2 = 16$
5	5 – 7 = -2	$(-2)^2 = 4$
		Total: 56

Mean: 7 Median: 6 Range: 9

Divide the total on the (Data - Mean)² column by n – 1 (*n: is the sample size*) $\frac{56}{6-1} = \frac{56}{5} = 11.2$

Take the square root of the result above that equals standard deviation $\sqrt{11.2}\approx 3.35$

3b.

Data: x	Data – Mean: x - \overline{x}	$(Data - Mean)^2 : (x - \overline{x})^2$
4	4 – 5 = -1	$(-1)^2 = 1$
0	0 – 5 = -5	$(-5)^2 = 25$
3	3 – 5 = -2	$(-2)^2 = 4$
6	6 – 5 = 1	$(1)^2 = 1$
9	9 – 5 = 4	$(4)^2 = 16$
12	12 – 5 = 7	$(7)^2 = 49$
2	2 - 5 = -3	$(-3)^2 = 9$
3	3 - 5 = -2	$(-2)^2 = 4$
4	4 - 5 = -1	$(-1)^2 = 1$
7	7 - 5 = 2	$(2)^2 = 4$
Total: 114		

Mean: 5 Median: 4 Range: 12 Divide the total on the (Data - Mean)² column by n – 1 (*n: is the sample size*) $\frac{114}{10-1} = \frac{114}{9} = 12.6$

Take the square root of the result above that equals standard deviation $\sqrt{12.6}\approx 3.6$

3c.

Data: x	Data – Mean: x - x	$(Data - Mean)^2 : (x - \overline{x})^2$
6	6 - 6 = 0	$(0)^2 = 0$
6	6 - 6 = 0	$(0)^2 = 0$
6	6 - 6 = 0	$(0)^2 = 0$
6	6 - 6 = 0	$(0)^2 = 0$
6	6 - 6 = 0	$(0)^2 = 0$
		Total: 0

Mean: 6 Median: 6

Range: 0

Divide the total on the (Data - Mean)² column by n – 1 (*n*: *is the sample size*) $\frac{0}{5-1} = \frac{0}{4} = 0$

Take the square root of the result above that equals standard deviation $\sqrt{\theta}\approx 0$

3d.

Data: x	Data – Mean: x - x	$(Data - Mean)^2 : (x - \overline{x})^2$
47	47 - 43.3 = 3.7	$(3.7)^2 = 12.69$
45	45 - 43.3 = 1.7	$(1.7)^2 = 2.89$
24	24 - 43.3 = -19.3	$(-19.3)^2 = 372.49$
56	56 - 43.3 = 12.7	$(12.7)^2 = 161.29$
76	76 - 43.3 = 32.7	$(32.7)^2 = 1069.29$
12	12 - 43.3 = -31.3	$(-31.3)^2 = 979.69$
Total:		

Mean: 43.3 Median: 46 Range: 64

Divide the total on the (Data - Mean)² column by n – 1 (*n: is the sample size*) $\frac{2598.34}{6-1} = \frac{2598.34}{5} = 519.668$

Take the square root of the result above that equals standard deviation $\sqrt{519.668} \approx 22.8$

- 4. a. mode
 - b. mean
 - c. median
 - d. mean
- 5. a. mean 4.57, median 4, mode 4b. only the mean is affected; it becomes 5
- 6. The \$1000 increase results in a \$1000 increase in the mean but the *s* remains the same since the spread of salaries does not change. The 3% increase causes a 3% increase in the mean <u>and</u> in the *s* since the spread is now wider from top to bottom salaries.
- 7. First State has more consistent service because its standard deviation is lower meaning there is less variation in waiting times.